王继锁

发布时间:2015-01-05文章来源:暂无 浏览次数:


所属教研室:理论物理

办公地址:科技实验大楼918

办公电话:0537-4455678

电子邮件:jswang@qfnu.edu.cn、jswang@lcu.edu.cn

个人简历

教育背景:

1978.2-1982.1:聊城师范学院(现聊城大学)物理系理学学士学位

1987.8-1988.7:山东大学物理系理论物理专业高等学校助教进修班结业

1998.9-2001.7:中国科学院安徽光学精密机械研究所光学专业理学博士学位

工作经历:

1982.1-1987.8:聊城师范学院(现聊城大学)物理系助教、讲师

1988.7-1998.9:聊城大学物理系讲师、副教授、教授

2001.7-2003.8:中国科学院武汉物理与数学研究所博士后

2003.8-2009.10:聊城大学物理科学与信息工程学院教授

2009.10 -至今:曲阜师范大学物理工程学院教授

教学任务

多年来,主要从事物理学专业本科生和研究生的基础课及专业课的教学工作,先后承担过的课程主要有:《量子力学》、《量子力学II(考研辅导)》、《热力学与统计物理学》、《原子物理学》、《热学》、《科技文献检索与利用》、《高等量子力学》、《量子光学》等。

自2004年起开始招收硕士生,目前在曲阜师范大学光学专业和理论物理专业招收博士生及硕士生,在聊城大学光学专业招收硕士生。

研究兴趣

量子光学与量子信息,高等量子理论及其应用等

曾获奖励

(1)“若干物理系统的量子效应研究”获国家教育部自然科学二等奖 (位1, 2006.1)

(2)“量子光学中一些理论问题的研究”获山东省自然科学二等奖 (位1, 2011.1)

(3)“新型量子态的构造及量子态新特性研究”获山东省自然科学二等奖(位2, 2007.4)

(4)“‘原子-光场’系统的非经典效应及变形量子群理论”获山东省科技进步三等奖

(位1, 1998.10)

(5)“介观量子系统的物理效应与量子群理论”获山东省自然科学三等奖(位2, 2002.9)

(6)“光场的压缩效应和其它非经典特性研究”获山东省科技进步三等奖(位2, 1995.12)

(7)“一维无公度系统电子态性质的研究”获山东省科技进步二等奖 (位3, 1994.12)

(8) 1998年6月获第五届“山东省青年科技奖”(独立)

(9) 1999年12月获曾宪梓教育基金会高等师范院校优秀教师三等奖(独立)

(10) 2001-2012年:先后五次获山东高等学校优秀科研成果(自然科学类)一等奖

科研项目

(1)国家自然科学基金:超导量子电路的量子效应与超导量子比特的退相干,

批准号: 11244005,起止时间: 2013.1-2014.12(在研),主持人;

(2)国家自然科学基金:含有约瑟夫森结的电路量子化与量子纠缠态,

批准号: 10574060,起止时间: 2006.1-2008.12(已按时结题),主持人;

(3)国家自然科学基金:应用量子纠缠态表象研究玻色实现下自旋压缩系统的演化与

退相干,批准号: 11347026,起止时间: 2014.1-2016.12(在研),参加者(第2位);

(4)国家自然科学基金:基于约瑟夫森结的固态量子计算及退相干研究,

批准号: 11147009,起止时间: 2012.1-2014.12(在研),参加者(第3位);

(5)山东省自然科学基金:基于约瑟夫森结介观电路的量子效应与量子调控,

编号: ZR2012AM004,起止时间: 2012.7-2015.7(在研),主持人;

(6)山东省自然科学基金:连续变量纠缠态表象及其应用研究,

编号: Y2008A23,起止时间: 2008.12-2011.12(已按时结题),主持人;

(7)山东省自然科学基金:介观电路的量子理论及原子-光场系统的腔场谱,

编号: Y2002A05,起止时间: 2002.12-2005.12(已按时结题),主持人;

(8)山东省自然科学基金:非简并多光子T-C模型的系统研究,

编号: Q96A08113,起止时间: 1996.10-1998.12(已按时结题),主持人;

(9)山东省自然科学基金:双模量子化光场与双原子相互作用的非经典特性,

编号: Q94A0505,起止时间: 1994.10-1996.12(已按时结题),主持人;

(10)山东省自然科学基金:非高斯光场的增减光子实现及其纠缠与退相干研究,

编号: ZR2013AM012,起止时间: 2013.10-2016.10(在研),参加者(第2位);

(11)山东省自然科学基金:相干纠缠态表象的构造、性质及其应用,

编号: ZR2010AQ027,起止时间: 2010.11-2013.11(已按时结题),参加者(第2位)。

代表性成果(论著、论文):

自1991年以来,发表的主要学术论文(按发表年度倒排序)如下:

2014年:

[1] Q.-Y.Yang, B.-L.Liang, J.-S.Wang*(王继锁), Decoherencedynamics of a

superconductingchargequbitcoupled to a boson bath and a spin bath. Int. J.Theor. Phys.,Vol.53(1): 1-9 (2014.1).

2013年:

[1] X.-G.Meng, Z. Wang, J.-S.Wang, et al., Wignerfunction, optical tomography of

two-variableHermitepolynomial state, and itsdecoherenceeffects studied by the entangled state representations. J. Opt. Soc. Am. B,Vol.30(6): 1614 (2013.6).

[2] B.-L.Liang, J.-S.Wang, X.-G.Meng, Q.-Y.Yang, Decoherencedynamics of a fluxqubitrespectively coupled to a boson bath and a spin bath. Int. J. Mod. Phys. B,Vol.27(24): 1350134 (2013.9).

[3] B.-L.Liang, J.-S.Wang, X.-G.Meng, Q.-Y.Yang, Investigatingmesoscopiccircuits with the entangled state representations. Chin. Phys. B,Vol.22(1): 016804 (2013.1).

[4] X.-G.Meng, J.-S.Wang, B.-L.Liang, Newapproach for deriving the exact time-evolution of density operator for diffusiveanharmonicoscillator and itsWignerdistribution function. Chin. Phys. B,Vol.22(3): 030307 (2013.3).

[5] Q.-Y.Yang, B.-L.Liang, J.-S.Wang*, Decoherencedynamics of a chargequbit

coupledto the noise bath. Chin. Phys. B,Vol.22(7): 070301 (2013.7).

2012年:

[1] J.-S.Wang, H.-Y.Fan, X.-G.Meng, AgeneralizedWeyl-Wignerquantization scheme unifying P-Q and Q-P ordering andWeylordering of operators. Chin. Phys. B,Vol.21(6): 064204 (2012.6).

[2] X.-G.Meng, Z. Wang, H.-Y.Fan, J.-S.Wang, Squeezednumber state and squeezed thermal state:decoherenceanalysis andnonclassicalproperties in the laser process. J. Opt. Soc. Am. B,Vol.29(7): 1835 (2012.7).

[3] X.-G.Meng, Z. Wang, H.-Y.Fan, J.-S.Wang, Z.-S.Yang, Nonclassicalproperties of photon-added two-mode squeezed thermal state and theirdecoherencein the thermal channel. J. Opt. Soc. Am. B,Vol.29(7): 1844 (2012.7).

[4] X.-G.Meng, Z. Wang, H.-Y.Fan, J.-S.Wang, Nonclassicalityanddecoherenceof photon-subtracted squeezed vacuum states. J. Opt. Soc. Am. B,Vol.29(11): 3141 (2012.11).

[5] X.-G.Meng, J.-S.Wang, X.-Y.Zhang, Anew bipartite entangled state describing the parametric down-conversion process and its applications in quantum optics. Chin. Phys. B,Vol.21(10): 100305 (2012.10).

[6] B.-L.Zhang, X.-G.Meng, J.-S.Wang*, Generation of new bipartite coherent- entangled state and its applications.Chin. Phys. B,Vol.21(3): 030304 (2012.3).

[7]于文健,王继锁*,梁宝龙, 非线性相干态光场与二能级原子相互作用的量子特性.物理学报, Vol.61(6): 060301 (2012.6).

2011年:

[1] J.-S.Wang, K.-Z.Yan, B.-L.Liang, Quantumeffects of a domain wall in the

ferromagneticsystem. Mod.Phys.Lett. B,Vol.25(6): 413 (2011.3).

[2] J.-S.Wang, X.-G.Meng, et al., Afamily of generalizedWigneroperators and its

physicalmeaning asbivariatenormal distribution. Chin. Phys.Lett.,Vol.28(10): 104209 (2011.10).

[3] X.-G.Meng, J.-S.Wang, X.-Y.Zhang, B.-L.Liang, Newparameterized entangled state representation and its applications. J. Phys. B,Vol.44(16): 165506 (2011.8).

[4] X.-G.Meng, J.-S.Wang, et al., Newbipartite coherent-entangled state in two-modeFockspace and its applications. Opt.Commun.,Vol.284(7): 2070 (2011.4).

[5] X.-G.Meng, J.-S.Wang, B.-L.Liang, Thefinite-dimensional even and odd pair

coherentstate and its statistical properties. Optik,Vol.122(22): 2021 (2011.11).

[6] X.-G.Meng, J.-S.Wang, B.-L.Liang, Theconstruction, properties and applications of a new bipartite coherent-entangled state in the two-modeFockspace.

Phys.Scr.,Vol.83(2): 025005 (2011.2).

[7] X.-G.Meng, J.-S.Wang, B.-L.Liang, Anew kind of bipartite coherent-entangled state and its applications in quantum optics. Int. J.Theor. Phys.,Vol.50(3): 906 (2011.3).

[8] W.-J.Yu, Y.-J.Xu, H.-C.Yuan, J.-S.Wang*, S-ordered expansion of the intermediate representation projector and its applications. Int. J.Theor. Phys.,Vol.50(9): 2871 (2011.9).

[9] M. Yang, J.-S.Wang*, X.-G.Meng, Anew kind of bipartite entangled state and some of its applications. Int. J.Theor. Phys.,Vol.50(11): 3348 (2011.11).

[10] X.-G.Meng, J.-S.Wang, B.-L.Liang, Anew finite-dimensional thermal coherent state and itsWignerdistribution function. Chin. Phys. B,Vol.20(1): 014204 (2011.1).

[11] X.-G.Meng, J.-S.Wang, B.-L.Liang, Someapplications of a new coherent-entangled state in two-modeFockspace. Chin. Phys. B,Vol.20(5): 050303 (2011.5).

[12] W.-J.Yu, H.-C.Yuan, J.-S.Wang*, Newgeneralized bipartite coherent-entangled state representation and its application. Science inChinaSeries G,Vol.54(12): 2155 (2011.12).

[13]张晓燕,王继锁, 相空间中对称的纠缠相干态及其非经典特性.物理学报, Vol.60(9): 090304 (2011.9).

[14]刘海燕,王继锁*,梁宝龙, 二项式光场与运动二能级原子相互作用系统的保真度. 量子光学学报, Vol.17(2): 96 (2011.6).

[15]于文健,王继锁*,高云峰,张晓燕,梁宝龙, 非线性相干态光场与二能级原子相互作用系统的保真度. 量子光学学报, Vol.17(4): 258 (2011.12).

2010年:

[1] J.-S.Wang, X.-G.Meng, B.-L.Liang, Wavefunction for the squeezed atomic coherent state in entangled state representation and some of its applications. Chin. Phys. B,Vol.19(1): 014207 (2010.1).

[2] J.-S.Wang, H.-Y.Fan, X.-G.Meng, Quantumfluctuation in excited states of

mesoscopicLC circuits at finite temperature. Chin. Phys. B,Vol.19(3): 034206 (2010.3).

[3] X.-G.Meng, J.-S.Wang, B.-L.Liang, Anew finite-dimensional pair coherent state studied by virtue of the entangled state representation and its statistical behavior.

Opt.Commun.,Vol.283(20): 4025 (2010.10).

[4] B.-L.Liang, J.-S.Wang, S.-X.Song, X.-G.Meng, Equivalentanalogy ofmesoscopicRLC circuit and its thermal effect. Int. J.Theor. Phys.,Vol.49(8): 1768 (2010.8).

[5] B.-L.Liang, J.-S.Wang*, X.-G.Meng, Selectionrules of energy-level transition for the capacitance coupling LCmesoscopiccircuit by using invarianteigen-operator method. Int. J.Theor. Phys.,Vol.49(10): 2313 (2010.10).

[6] B.-L.Liang, J.-S.Wang, X.-G.Meng, J. Su, Quantumentanglement and control in acapacitivelycoupled chargequbitcircuit. Chin. Phys. B,Vol.19(1): 010315 (2010.1).

[7] X.-G.Meng, J.-S.Wang, B.-L.Liang, Energylevel formula for two moving charged particles with Coulomb coupling derived via the entangled state representations. Chin. Phys. B,Vol.19(4): 044202 (2010.4).

[8] J. Su, J.-S.Wang*, X.-Y.Zhang, B.-L.Liang, Theinitialdecoherenceof themesoscopicJosephsonjunction fluxqubit. Chin. Phys. B,Vol.19(5): 057301 (2010.5).

[9] X.-G.Meng, H.-Y.Fan, J.-S.Wang, Normalcoordinate in harmonic crystal obtained by virtue of the classical correspondence of the invarianteigen-operator. Chin. Phys. B,Vol.19(7): 070303 (2010.7).

[10] H.-Y.Liu, J.-S.Wang*, B.-L.Liang, Externalelectric field control in the charge

qubitsincluding threeJosephsonjunctions. Chin. Phys. B,Vol.19(10): 100314 (2010.10).

[11] X.-G.Meng, J.-S.Wang, B.-L.Liang, Atomiccoherent states as energyeigenstatesof a Hamiltonian describing 2-dimensional anisotropic harmonic potential in uniform magnetic field. Chin. Phys. B,Vol.19(12): 124205 (2010.12).

2009年:

[1] X.-G.Meng, J.-S.Wang, B.-L.Liang, Quantumtheory of the mutual-inductance- coupled LC circuit includingJosephsonjunctions studied via the entangled state representation. SolidStateCommun.,Vol.149(45-46): 2027 (2009.12).

[2] X.-G.Meng, J.-S.Wang, et al., Atomiccoherent states as theeigenstatesof a two-dimenaionalanisotropic harmonic oscillator in a uniform magnetic field.Mod.Phys.Lett. A,Vol.24(38): 3129 (2009.12).

[3] B.-L.Liang, J.-S.Wang, X.-G.Meng, J. Su, ModifiedJosephsonequation and measurement dynamics for theJosephsontransmission line detector.Mod.Phys.Lett. B,Vol.23(16): 2013 (2009.6).

[4] X.-Y.Zhang, J.-S.Wang*, X.-G.Meng, J. Su, Quantumstatistical properties of the even and odd negative binomial states. Mod.Phys.Lett. B,Vol.23(22): 2637 (2009.8).

[5] B.-L.Liang, J.-S.Wang, X.-G.Meng, Quantizationfor themesoscopicRLC circuit and its thermal effect by virtue of GHFT. Mod.Phys.Lett. B,Vol.23(30): 3621 (2009.12).

[6] X.-Y.Zhang, J.-S.Wang*, X.-G.Meng, J. Su, Wignerfunctions and tomograms of theKlauder-Perelomovcoherent states for thepseudoharmonicoscillator. Int. J.Theor. Phys.,Vol.48(2): 535 (2009.2).

[7] X.-Y.Zhang, J.-S.Wang*, X.-G.Meng, J. Su, Wignerfunctions and tomograms of the even and odd negative binomial states. Int. J.Theor. Phys.,Vol.48(3): 803 (2009.3).

[8] B.-L.Liang, J.-S.Wang, X.-G.Meng, J. Su, Entangledstate in quantization of

magneticfluxqubitswith mutual inductance coupling. Int. J.Theor. Phys.,Vol.48(6): 1545 (2009.6).

[9] X.-Y.Zhang, J.-S.Wang*, B.-L.Liang, J. Su, Marginaldistribution ofWignerfunction inmesoscopicRLC circuit at finite temperature and its application.

Int. J.Theor. Phys.,Vol.48(7): 2000 (2009.7).

[10] B.-L.Liang, J.-S.Wang, X.-G.Meng, Thermaleffect for themesoscopicLC circuits including complicated coupling by virtue of GHFT. Int. J.Theor. Phys.,Vol.48(8): 2319 (2009.8).

[11] X.-G.Meng, J.-S.Wang, B.-L.Liang, Quasiprobabilitydistribution functions of

squeezedpair coherent states. Int. J.Theor. Phys.,Vol.48(8): 2390 (2009.8).

[12] X.-G.Meng, J.-S.Wang, B.-L.Liang, Two-variableHermitepolynomial state and itsWignerfunction. Int. J.Theor. Phys.,Vol.48(11): 3268 (2009.11).

[13] J. Su, J.-S.Wang*, B.-L.Liang, X.-Y.Zhang, ModifiedJosephsonequation for

mesoscopicparallel LC circuit including aJosephsonjunction. Chin. Phys.Lett.,Vol.26(1): 017302 (2009.1).

[14] X.-G.Meng, J.-S.Wang, B.-L.Liang, Husimifunctions of excited squeezed vacuum states. Commun.Theor.Phys.,Vol.52(3): 487 (2009.9).

[15] X.-G.Meng, J.-S.Wang, B.-L.Liang, Someproperties of two-mode displaced excited squeezed vacuum states. Commun.Theor.Phys.,Vol.52(3): 493 (2009.9).

[16] X.-Y.Zhang, J.-S.Wang*, X.-G.Meng, J. Su, Wignerfunctions and tomograms of the even and odd binomial states. Chin. Phys. B,Vol.18(2): 604 (2009.2).

[17] X.-G.Meng, J.-S.Wang, B.-L.Liang, Normalordering andantinormalordering of the operator (fQ+gP)n and some of their applications. Chin. Phys. B,Vol.18(4): 1534 (2009.4).

[18] J. Su, J.-S.Wang*, B.-L.Liang, X.-Y.Zhang, Thermaleffect and energy-level transition rule for themesoscopicLC circuit with inductance-capacitance coupling. Chin. Phys. B,Vol.18(5): 2024 (2009.5).

[19] X.-G.Meng, J.-S.Wang, B.-L.Liang, Quasiprobabilitydistributions of new kinds of even and odd nonlinear coherent states. Chin. Phys. B,Vol.18(6): 2300 (2009.6).

[20]苏杰,王继锁*,张晓燕,梁宝龙, 有限温度下介观电感耦合电路的能量与量子涨落. 量子电子学报, Vol.26(2): 231 (2009.3).

2008年:

[1] J.-S.Wang, X.-G.Meng, et al., Energy-level and wave functions of two moving

chargedparticles with elastic coupling derived by virtue of the entangled state

representations. PhysicaA,Vol.387(16-17): 4453 (2008.7).

[2] J.-S.Wang, B.-L.Liang, et al., OperatorJosephsonequation for aJosephson

junctionconnected into amesoscopicLCcircuit.Mod. Phys.Lett. B,Vol.22(32): 3171 (2008.12).

[3] J.-S.Wang, X.-G.Meng, Wignerfunctions and tomograms of the photon-depleted even and odd coherent states. Chin. Phys. B,Vol.17(4): 1254 (2008.4).

[4] X.-G.Meng, J.-S.Wang, B.-L.Liang, ModifiedJosephsonequations for the

mesoscopicLC circuit including two coupledJosephsonjunctions. J. Phys. A,Vol.41(23): 235208 (2008.6).

[5] X.-G.Meng, J.-S.Wang, Y.Zhai, et al., Number-phase quantization and deriving

energy-levelgap of two LC circuits with mutual-inductance. Chin. Phys.Lett.,Vol.25(4): 1205 (2008.4).

[6] X.-G.Meng, J.-S.Wang, B.-L.Liang, Cooper-pair number-phase quantization for the inductance coupling circuit includingJosephsonjunctions. Chin. Phys.Lett.,Vol.25(4): 1419 (2008.4).

[7] X.-Y.Zhang, J.-S.Wang*, et al., FluctuationofmesoscopicRLC circuit at finite

temperature. Chin. Phys.Lett.,Vol.25(9): 3126 (2008.9).

[8] B.-L.Liang, J.-S.Wang, H.-Y.Fan, X.-G.Meng, ModifiedSQUID operator equation for a single-qubitstructure coupled to a quantum resonator. Chin. Phys.Lett.,Vol.25(10): 3753 (2008.10).

[9] B.-L.Liang, J.-S.Wang*, X.-G.Meng, Entangledstates in a single-qubitstructure with SQUID coupled with a super-conducting resonator.Commun.Theor.Phys.,Vol.49(1): 88 (2008.1).

[10] X.-G.Meng, J.-S.Wang, B.-L.Liang, Two-mode excited squeezed vacuum state and its properties. Commun.Theor.Phys.,Vol.49(5): 1299 (2008.5).

[11] X.-G.Meng, J.-S.Wang, B.-L.Liang, Wignerfunction and phase probability

distributionof q-analogue of squeezed one-photon state.Commun.Theor.Phys.,Vol.49(6): 1457 (2008.6).

[12] B.-L.Liang, J.-S.Wang*, et al., Cooper-pair number-phase quantization analysis in double-Josephson-junctionmesoscopiccircuit coupled by a capacitor.

Chin. Phys. B,Vol.17(2): 697 (2008.2).

[13] X.-G.Meng, J.-S.Wang, B.-L.Liang, et al., Wignerfunction for the generalized excited pair coherent state. Chin. Phys. B,Vol.17(5): 1791 (2008.5).

[14] X.-G.Meng, J.-S.Wang, et al., Theq-analogues of two-mode squeezed states

constructedby virtue of the IWOP technique. Chin. Phys. B,Vol.17(8): 2973 (2008.8).

[15] X.-G.Meng, J.-S.Wang, T.-K.Liu, Finite-dimensional even and odd nonlinear pair coherent states and their somenonclassicalproperties. Chin. Phys. B,Vol.17(9): 3350 (2008.9).

[16]苏杰,王继锁*,梁宝龙,张晓燕, 介观电容耦合LC电路在有限温度下的能量及热效应. 物理学报, Vol.57(11): 7216 (2008.11).

[17]孟祥国,王继锁,梁宝龙, 奇偶对相干态的维格纳函数和层析图函数.

光学学报, Vol.28(3): 549 (2008.3).

2007年:

[1] J.-S.Wang, X.-G.Meng, J.Feng, Y.-F.Gao, Establishingpath integral in the entangled state representation for Hamiltonians in quantum optics. Chin. Phys.,Vol.16(1): 23 (2007.1).

[2] J.-S.Wang, X.-G.Meng, Thenonlinear squeezed one-photon states and their

nonclassicalproperties. Chin. Phys.,Vol.16(8): 2422 (2007.8).

[3] X.-G.Meng, J.-S.Wang*, et al., Wignerfunction and tomogram of the excited

squeezedvacuum state. Phys.Lett. A,Vol.361(3): 183 (2007.1).

[4] X.-G.Meng, J.-S.Wang, et al., Wignerfunction and tomogram of the pair

coherentstate. Phys.Lett. A,Vol.363(1-2): 12 (2007.3).

[5] X.-G.Meng, J.-S.Wang, B.-L.Liang, Phaseproperties of new even and odd nonlinear coherent states. PhysicaA,Vol.382(2): 494 (2007.8).

[6] X.-G.Meng, J.-S.Wang, Y.-L.Li, Neweven and odd nonlinear coherent states and theirnonclassicalproperties. Int. J.Theor. Phys.,Vol.46(5): 1205 (2007.5).

[7] X.-G.Meng, J.-S.Wang, Theq-analogues of squeezed states and some properties. Int. J.Theor. Phys.,Vol.46(5): 1307 (2007.5).

[8] B.-L.Liang, J.-S.Wang*, X.-G.Meng, Quantizationof the single-qubitstructure with SQUID. Int. J.Theor. Phys.,Vol.46(5): 1416 (2007.5).

[9] B.-L.Liang, J.-S.Wang*, et al., Marginaldistributions ofWignerfunction in a

mesoscopicL-C circuit at finite temperature and thermalWigneroperator. Int. J.Theor. Phys.,Vol.46(7): 1779 (2007.7).

[10] B.-L.Liang, J.-S.Wang*, X.-G.Meng, Entangledstates in the capacitance coupling doubleJosephsonjunctionmesoscopiccircuit. Int. J.Theor. Phys.,Vol.46(11): 2901 (2007.11).

[11] B.-L.Liang, J.-S.Wang*, et al., Cooper-pair number-phase quantization for a

mesoscopicLC circuit including aJosephsonjunction. Chin. Phys.Lett.,Vol.24(11): 3241 (2007.11).

[12] X.-G.Meng, J.-S.Wang, B.-L.Liang, Thenormalized excited squeezed vacuum state and its applications. Commun.Theor.Phys.,Vol.47(5): 927 (2007.5).

[13] X.-G.Meng, J.-S.Wang, Y.-L.Li, Wignerfunction and tomogram of theHermitepolynomial state. Chin. Phys.,Vol.16(8): 2415 (2007.8).

[14] B.-L.Liang, J.-S.Wang*, Quantizationof the double-qubitstructure and quantum computation. Chin. Phys.,Vol.16(10): 3097 (2007.10).

[15]孟祥国,王继锁*, 新的奇偶非线性相干态及其非经典性质.

物理学报, Vol.56(4): 2154 (2007.4).

[16]孟祥国,王继锁*,梁宝龙, 增光子奇偶相干态的Wigner函数.

物理学报, Vol.56(4): 2160 (2007.4).

[17]孟祥国,王继锁, 有限维奇偶对相干态的非经典性质.

物理学报, Vol.56(8): 4578 (2007.8).

[18]孟祥国,王继锁,梁宝龙, 增光子奇偶相干态的位相特性.

光学学报, Vol.27(4): 721 (2007.4).

[19]孟祥国,王继锁,梁宝龙, 双模激发压缩真空态的维格纳函数.

光学学报, Vol.27(9): 1700 (2007.9).

[20]梁宝龙,王继锁*,孟祥国,李艳玲,含有超导约瑟夫森结介观互感电路的量子化及其量子效应. 量子电子学报, Vol.24(5): 561 (2007.9).

2006年:

[1] H.-Y.Fan, J.-S.Wang, et al., Cooper-pair number-phaseWignerfunction for thebosonicoperatorJosephsonmodel. Phys.Lett. A,Vol.359(6): 580 (2006.12).

[2] H.-Y.Fan, J.-S.Wang, et al., Cooper-pair-number-phase squeezing for thebosonicHamiltonian model ofJosephsonjunction.Mod.Phys.Lett. B,Vol.20(17): 1041 (2006.7).

[3] H.-Y.Fan, X.-G.Meng, J.-S.Wang, Newform ofLegendrepolynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics.Commun.Theor.Phys.,Vol.46(5): 845 (2006.11).

[4]孟祥国,王继锁, 有限维Hilbert空间Roy型奇偶非线性相干态的振幅平方压缩.物理学报, Vol.55(4): 1774 (2006.4).

2005年:

[1] H.-Y.Fan, J.-S.Wang, OntheWeylordering invariance under general n-mode similar transformations. Mod.Phys.Lett. A,Vol.20(20): 1525 (2005.6).

[2] H.-Y.Fan, J.-S.Wang, Angularmomentum phase state representation for quantum pendulum. Commun.Theor.Phys.,Vol.43(4): 611 (2005.4).

[3] T.-K.Liu, J.-S.Wang, J.Feng, M.-S.Zhan, Entropyevolution properties in a system of two entangled atoms interacting with light field. Chin. Phys.,Vol.14(3): 536 (2005.3).

2004年:

[1] J.-S.Wang, T.-K.Liu, J.Feng, J.-Z.Sun, Aclass of even and odd nonlinear coherent states and their properties. Int. J.Theor. Phys.,Vol.43(6): 1469 (2004.6).

[2] J.-S.Wang, T.-K.Liu, J.Feng, J.-Z.Sun, Aclass of k-quantum nonlinear coherent states and some of their properties. Int. J.Theor. Phys.,Vol.43(9): 1891 (2004.9).

[3] J.-S.Wang, T.-K.Liu, J.Feng, J.-Z.Sun, M.-S.Zhan, Anew kind of k-quantum

nonlinearcoherent state: their generation and physical meaning.Commun.Theor.Phys.,Vol.41(6): 935 (2004.6).

[4] J.-S.Wang, T.-K.Liu, J.Feng, J.-Z.Sun, Quantumstatistical properties of k-quantum nonlinear coherent states. Commun.Theor.Phys.,Vol.42(3): 419 (2004.9).

[5]王继锁,刘堂昆,冯健,孙金祚, Roy-型奇偶非线性相干态的位相概率分布.物理学报, Vol.53(11): 3729 (2004.11).

2003年:

[1] J.-S.Wang, T.-K.Liu, J.Feng, J.-Z.Sun, M.-S.Zhan, Phaseproperties of new even and odd nonlinear coherent states. Int. J.Theor. Phys.,Vol.42(12): 2855 (2003.12).

[2] J.-S. Wang, J.Feng, Y.-FGao, T.-K.Liu, M.-S.Zhan, Neweven and odd nonlinear coherent states and theirnonclassicalproperties. Int. J.Theor. Phys.,Vol.42(1): 89 (2003.1).

2002年:

[1] J.-S.Wang, J.Feng, T.-K.Liu, M.-S.Zhan, Quantumstatistical properties oforthonormalzedeigenstatesof the operator. J. Phys. B:Vol.35(11): 2411 (2002.6).

[2] J.-S.Wang, J.Feng, T.-K.Liu, M.-S.Zhan, Nonclassicalproperties oforthonormalzedeigenstatesof the operator. Int. J.Theor. Phys.,Vol.41(12): 2427 (2002.12).

[3]王继锁,冯健,刘堂昆,詹明生, 算符正交归一本征态的非经典特性.物理学报, Vol.51(9): 1983 (2002.9).

[4]王继锁,冯健,刘堂昆,詹明生, 一种新的奇偶非线性相干态及其量子统计性质.物理学报, Vol.51(11): 2509 (2002.11).

[5]王继锁,冯健,刘堂昆,詹明生, Q变形非简谐振子湮没算符高次幂本征态的反聚束效应. 高能物理与核物理, Vol.26(6): 569 (2002.6).

[6]王继锁,冯健,刘堂昆,詹明生, 平移压缩Fock态下无耗散介观电感耦合电路的量子效应. 光子学报, Vol.31(5): 570 (2002.5).

2001年:

[1] J.-S.Wang, J.Feng, M.-S.Zhan, Quantumfluctuations of a non-dissipative

mesoscopicinductance coupling circuit in a displaced squeezedFockstate.

Phys.Lett. A,Vol.281(5-6): 341 (2001.4).

[2]王继锁,冯健,詹明生, 无耗散介观电感耦合电路的库仑阻塞和电荷的量子效应.物理学报, Vol.50(2): 299 (2001.2).

[3]王继锁,刘堂昆,詹明生, Q变形非简谐振子广义奇偶相干态的高阶压缩特性.高能物理与核物理, Vol.25(1): 11 (2001.1).

2000年:

[1] J.-S.Wang, T.-K.Liu, M.-S.Zhan, Coulombblockade and quantum fluctuations ofmesoscopicinductance coupling circuit. Phys.Lett. A,Vol.276(1-4): 155 (2000.10).

[2] J.-S.Wang, T.-K.Liu, M.-S.Zhan, Nonclassicalproperties of even and odd generalized coherent states for an isotonic oscillator. J. Opt. B:Vol.2(6): 758 (2000.12).

[3] J.-S.Wang, T.-K.Liu, M.-S.Zhan, Higherorder squeezed states ofanharmonicoscillators. Int. J.Theor. Phys.,Vol.39(11): 2583 (2000.11).

[4] J.-S.Wang, T.-K.Liu, M.-S.Zhan, Quantumeffects of anondissipativemesoscopiccapacitance coupling circuit in a displaced squeezedFockstate. Int. J.Theor. Phys.,Vol.39(11): 2595 (2000.11).

[5] J.-S.Wang, T.-K.Liu, M.-S.Zhan, Quantumfluctuations in amesoscopicinductance coupling circuit. Int. J.Theor. Phys.,Vol.39(8): 2013 (2000.8).

[6] J.-S.Wang, T.-K.Liu, M.-S.Zhan, Quantumwavefunctionsand fluctuations ofmesoscopicRLC circuit. Chin. Phys.Lett.,Vol.17(7): 528 (2000.7).

[7]王继锁,刘堂昆,詹明生, 平移压缩Fock态下介观电容耦合电路的量子涨落.物理学报, Vol.49(11): 2271 (2000.11).

[8]王继锁,刘堂昆,詹明生, Q变形非简谐振子湮没算符高次幂的本征态及其高阶压缩特性. 高能物理与核物理, Vol.24(12): 1115 (2000.12).

[9]王继锁,刘堂昆,詹明生, 非简谐振子湮没算符高次幂的本征态及其高阶压缩性质. 光学学报, Vol.20(10): 1317 (2000.10).

[10]王继锁,刘堂昆,柳晓军,詹明生, 铁磁系统中介观畴壁运动的波函数及其量子效应. 低温物理学报, Vol.22(2): 119 (2000.4).

[11]王继锁,刘堂昆,詹明生, 无耗散介观电感耦合电路的量子效应.光子学报, Vol.29(1): 22 (2000.1).

1999年:

[1]刘堂昆,王继锁,柳晓军,詹明生, 非共振相互作用系统中的密度算符间距的演化. 物理学报, Vol.48(11): 2051 (1999.11).

1998年:

[1] J.-S.Wang, B.-Y.Wang, C.-Y.Sun, Evenand oddqs-coherent states and their

photon-statisticalproperties. Phys.Lett. A,Vol.246(5): 464 (1998.9).

[2] J.-S.Wang, C.-Y.Sun, Higher-order squeezing properties of even and odd q-coherent states. QuantumSemiclass.Opt.,Vol.10(2): L27 (1998.4).

[3] J.-S.Wang, C.-Y.Sun, Quantumeffects ofmesoscopicRLC circuit in squeezed

vacuumstate. Int. J.Theor. Phys.,Vol.37(4): 1213 (1998.4).

[4]王继锁,韩保存,孙长勇, 介观电容耦合电路的量子涨落.物理学报, Vol.47(7): 1187 (1998.7).

1997年:

[1] J.-S.Wang, C.-Y.Sun, Eigenstatesof the operator and theirantibunchingeffect.Commun.Theor.Phys.,Vol.27(4): 443 (1997.6).

[2] J.-S.Wang, C.-Y.Sun, Quantumstatistical properties of even and oddqs-coherent states. Commun.Theor.Phys.,Vol.28(2): 187 (1997.9).

[3] J.-S.Wang, C.-Y.Sun, Squeezingand higher-order squeezing properties ofeigenstatesof the operator . Chinese J. of Lasers B, Vol.B6, No.3, 223 (1997.6).

[4] J.-S.Wang, C.-Y.Sun, et al., Propertiesof amplitude Nth-power squeezing of even and oddqs-coherent states. Chinese J. of Lasers B, Vol.B6, No.4, 321 (1997.8).

[5]王继锁,孙长勇, 压缩真空态下介观电路的量子涨落.物理学报, Vol.46(10): 2007 (1997.10).

[6]于肇贤,王继锁,刘业厚, 非简谐振子广义相干态的高阶压缩效应及反聚束效应.物理学报, Vol.46(9): 1693 (1997.9).

[7]王继锁,孙长勇等, 双参数形变谐振子湮没算符高次幂本征态的量子统计性质.高能物理与核物理, Vol.21(9): 793 (1997.9).

[8]王继锁,孙长勇,赵铭健, 偶奇qs相干态的非经典特性.光学学报, Vol.17(3): 293 (1997.3).

1996年:

[1]王继锁,孙长勇等, 双参数形变谐振子湮没算符高次幂的本征态.高能物理与核物理, Vol.20(8): 703 (1996.8).

[2]王继锁,孙长勇,孙金祚, 光子消灭算符高次幂本征态的完备性问题.光子学报, Vol.25(8): 699 (1996.8).

[3]王继锁,孙长勇等, 偶奇q-相干态的振幅N次方压缩特性.量子光学学报, Vol.2(2): 105 (1996.6).

[4]王继锁,孙长勇, 双参数形变奇偶相干态的非经典特性.量子光学学报, Vol.2(3): 186 (1996.9).

1995年:

[1] J.-Z.Sun, J.-S.Wang, Modificationof the completeness relation of theeigenstatesof the operator . Phys. Rev. A,Vol.52(3): 2483 (1995.9).

[2] J.-S.Wang, C.-K.Wang, et al., Highermoment properties of k-boson q-coherent states. Phys.Lett. A,Vol.199(3-4): 137 (1995.3).

[3] J.-S.Wang, Q.-M.Sui, C.-K.Wang, AmplitudeNth-power squeezing of a field in theJaynes-Cummings model. QuantumSemiclass.Opt.,Vol.7(5): 917 (1995.10).

[4] J.-S.Wang, C.-K.Wang, J.-Z.Sun, et al., Theamplitude Nth-power squeezing of field in themultiphotonJ-C model interacting with the superposition state.ActaPhys. Sin.(Overseas Edition), Vol.4(4): 247 (1995.4).

[5]王继锁,王传奎, 双光子Jeynes-Cummings模型中场的振幅N次方压缩.物理学报, Vol.44(9): 1427 (1995.9).

1994年:

[1]王继锁,王传奎,孙金祚, 相干态Jaynes-Cummings模型中场的振幅N次方压缩.光学学报, Vol.14(8): 819 (1994.8).

[2]王继锁,王传奎, q-玻色湮没算符高次幂的本征态及其性质.光学学报, Vol.14(10): 1043 (1994.10).

[3]王继锁,孙金祚,王传奎, 光子消灭算符高次幂本征态的振幅N次方压缩.光子学报, Vol.23(3): 200 (1994.6).

[4]王继锁,王传奎, 由相干态生成光子消灭算符高次幂的本征态.光子学报, Vol.23(5): 424 (1994.10).

[5]王继锁,王传奎, 一类新的光场迭加态的振幅N次方压缩特性.光子学报, Vol.23(6): 576(1994.12).

1993年:

[1]王继锁,孙金祚,王传奎等, 真空态多光子Jaynes-Cummings模型中场的振幅N次方压缩. 光学学报, Vol.13(12): 1096 (1993.12).

[2]王继锁,孙金祚,王传奎, 光场迭加态的振幅N次方压缩.量子电子学, Vol.10(2): 165 (1993.6).

1992年:

[1] J.-Z.Sun, J.-S.Wang, C.-K.Wang, Generationoforthonormalizedeigenstatesof the operator (for ) from coherent states and their higher-order squeezing. Phys. Rev. A,Vol.46(3): 1700 (1992.8).

[2] J.-Z.Sun, C.-K.Wang, J.-S.Wang, Existenceof mobility edges of theAubrymodel in one-dimensional incommensurate systems. Phys. Rev. B,Vol.46(19): 12132 (1992.11).

[3]孙金祚,王继锁,王传奎, 奇偶相干态的新的高阶压缩.量子电子学, Vol.9(4): 397 (1992.12).

1991年:

[1]王继锁, 光子消灭算符高次幂本征态的数学结构及其性质.物理学报, Vol.40(4): 547 (1991.4).

[2] J.-Z.Sun, J.-S.Wang, C.-K.Wang, Orthonormalizedeigenstatesof cubic and higher-powers of the annihilation operator. Phys. Rev. A,Vol.44(5): 3369 (1991.9).

[3] J.-Z.Sun, J.-S.Wang, C.-K.Wang, Orthonormalizedeigenstatesof operator and their squeezing properties. J. Mod. Opt.,Vol.38(11): 2295 (1991.11).

[4]王继锁,孙金祚,王传奎, 正交归一本征态的高阶压缩.量子电子学, Vol.8(3): 320 (1991.9).

[5]王继锁, 二维氢原子径向方程的两种解法.大学物理, Vol.10(12): 12 (1991.12).

    关闭 打印责任编辑:

    上一篇:·孔祥木

    友情链接